Chapter 1

Canonical Froms of 2nd Order Linear PDE's

Consider the PDE

$$
a u_{x x}+\mathbf{2} b u_{x y}+c u_{y y}+d u_{x}+e u_{y}+f u+g=0
$$

where coefficients a, \cdots, g are functions of x and y and $u=u(x, y)$.

- This PDE is called hyperbolic if $b^{2}>a c$ or $b^{2}-a c>0$. The wave equation $\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$ is a hyperbolic equation.
- This PDE is called parabolic if $b^{2}=a c$ or $b^{2}-a c=0$. The heat equation $\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}$ is a parabolic equation.
- This PDE is called elliptic if $b^{2}<a c$ or $b^{2}-a c<0$. The Laplace equation $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$ is an elliptic equation.

By an appropriate change of variables the PDE $a u_{x x}+2 b u_{x y}+c u_{y y}+d u_{x}+e u_{y}+f u+g=0$ can be written in its canonical form. The canonical forms are

- Hyperbolic PDE: $u_{\xi \eta}+$ Lower Ordered Terms $=0$. Incorporating a 45 degree rotation of coordinate sytem into the change of variables, this equation can be written in the form $u_{\xi \xi}-u_{\eta \eta}+$ Lower Ordered Terms $=0$.
- Parabolic PDE: $u_{\xi \xi}+$ Lower Ordered Terms $=0$.
- Elliptic PDE: $u_{\xi \xi+} u_{\eta \eta}+$ Lower Ordered Terms $=0$.

The characteristic equation of the original PDE is the differential equation

$$
a\left(\frac{d y}{d x}\right)^{2}-2 b \frac{d y}{d x}+c=0
$$

Notice that the chararcteric equation has $-2 b$ as a coefficient, while the PDE has $+2 b$.

- In the case of a hyperbolic PDE, the characteristic equation has two real and unequal solutions

$$
\frac{d y}{d x}=\frac{-(-2 b) \pm \sqrt{(-2 b)^{2}-4 a c}}{2 a}=\frac{b \pm \sqrt{b^{2}-a c}}{a}
$$

Solve these ODE's for y, and write the solutions in the form

$$
\phi(x, y)=c_{1} \text { and } \psi(x, y)=c_{2}
$$

The change of variable

$$
\xi=\phi(x, y), \eta=\psi(x, y)
$$

will reduce the PDE to its canonical form.

- In the case of a parabolic PDE, the characteristic equation has one solution

$$
\frac{d y}{d x}=\frac{-(-2 b)}{2 a}=\frac{b}{a}
$$

Solve this ODE for y, and write the solution in the form

$$
\phi(x, y)=c_{1}
$$

Let $\xi=\phi(x, y)$ and choose smooth function $\eta=\psi(x, y)$ independent of ξ; choose η so that the Jacobian $J=\frac{\partial(\xi, \eta)}{\partial(x, y)}=\left|\begin{array}{ll}\xi_{x} & \xi_{y} \\ \eta_{x} & \eta_{y}\end{array}\right| \neq 0$.

The change of variable

$$
\xi=\phi(x, y), \eta=\psi(x, y)
$$

will reduce the PDE to its canonical form.

- In the case of an elliptic PDE, the characteristic equation has two complex conjuage solutions

$$
\frac{d y}{d x}=\frac{-(-2 b) \pm \sqrt{(-2 b)^{2}-4 a c}}{2 a}=\frac{b}{a} \pm i \frac{\sqrt{a c-b^{2}}}{a}
$$

Choose one of the ODE's, say $\frac{d y}{d x}=\frac{b}{a}+i \frac{\sqrt{a c-b^{2}}}{a}$, solve it for y, and write the solution in the form

$$
\phi(x, y)+i \psi(x, y)=c_{1}
$$

The change of variable

$$
\xi=\phi(x, y), \eta=\psi(x, y)
$$

will reduce the PDE to its canonical form.

